Dense packing of general-shaped particles using a minimization technique

Computational particle mechanics(2016)

Cited 16|Views2
No score
Abstract
The discrete element method (DEM) is a numerical method that has achieved general acceptance as an alternative tool to model discontinuous media, with a wide range of practical applications. Given that spheres are not always a suitable shape for DEM simulations, other particle shapes need to be used. However, for shapes different from spheres, there are not many advancing front packing algorithms, which are, in many cases, the best algorithms that allow obtaining an appropriate initial set of particles for a DEM simulation. This lack of advancing front packing algorithms for shapes different from spheres is mostly due to the difficulty of solving the problem of placing a mobile particle in contact with other two (in 2D) or three (in 3D) particles. In this paper, a new method for solving the problem of the particle in contact is proposed, and it is compared with the well-established wrappers method. It is shown that the new proposed method is a promising alternative for spherocylinders. For other shapes the formulation of the new method is shown to be correct, but it was clearly outperformed by the wrappers method and the efficiency of the proposed formulation needs to be improved by optimizing the solution procedure.
More
Translated text
Key words
DEM,Packing,Particle in contact,Optimization,Spherocylinders
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined