Binary colloidal glasses: linear viscoelasticity and its link to the microscopic structure and dynamics.

SOFT MATTER(2019)

引用 10|浏览44
暂无评分
摘要
We study the relation between the microscopic structure and dynamics and the macroscopic rheological response of glass-forming colloidal suspensions, namely binary colloidal hard-sphere mixtures with large size asymmetry (1 : 5) that span a large range of mixture compositions close to the glass transition. The dynamical shear moduli are measured by oscillatory rheology and the structure and dynamics on the single-particle level by confocal microscopy. The data are compared with Brownian Dynamics simulations and predictions from mode-coupling theory based on the Percus-Yevick approximation. Experiments, simulations and theory consistently observe a strong decrease of the intermediate-frequency mechanical moduli combined with faster dynamics at intermediate mixing ratios and hence a non-monotonic dependence of these parameters but a localization of the large particles which decreases monotonically as the fraction of small particles is increased. We find that the Generalized-Stokes Einstein relation applied to the mean square displacements of the two components leads to a reasonable estimate of the shear moduli of the mixtures and hence links the rheological response to the particle dynamics which in turn reflects the microscopic structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要