Biosorption of glycerol impurities from biodiesel production onto electrospun chitosan-based nanofibers: equilibrium and thermodynamic evaluations

Environmental Science and Pollution Research(2019)

引用 6|浏览0
暂无评分
摘要
The increase in biodiesel production has been leading to an excess amount of crude glycerol and, consequently, serious environmental issues. For this reason, electrospun chitosan-based nanofibers (CB-EN), composed by chitosan and poly(ethylene oxide) (PEO), were synthesized to apply in the biosorption of impurities from industrial glycerol. To evaluate the biosorption efficiency, the chitosan-based nanofiber was compared to other chitosan-based biosorbents (chitosan biopolymeric film and chitosan powder). The equilibrium and thermodynamic studies were successfully performed to comprehend the interaction mechanisms through the biosorption of glycerol pigments onto electrospun chitosan-based nanofibers. The temperature effect was evaluated by experimental equilibrium curves. Freundlich and BET models were used to estimate isotherm parameters. Gibbs free energy change, enthalpy change, entropy change, and isosteric heat of biosorption were quantified. The equilibrium curves showed that the highest equilibrium relative adsorption (340.7 g −1 ) was reached at 60 °C. The BET model was the most suitable to represent the equilibrium behavior. The thermodynamic parameters indicated that the biosorption was spontaneous, exothermic, random, and energetic heterogeneous. Therefore, this work developed a green and efficient alternative to refine industrial glycerol. Graphical abstract Note: This data is mandatory. Please provide
更多
查看译文
关键词
Biomaterial, Electrospinning, Glycerol purification, Nanomaterial, Physisorption, Pigments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要