Cumulative effects of municipal effluent and parasite infection in yellow perch: A field study using high-throughput RNA-sequencing.

Science of The Total Environment(2019)

引用 16|浏览12
暂无评分
摘要
Multiple metabolic, immune and reproductive effects have been reported in fish residing in effluent-impacted sites. Natural stressors such as parasites also have been shown to impact the responses of organisms to chronic exposure to municipal effluent in the St. Lawrence River (Quebec, Canada). In order to comprehensively evaluate the cumulative impacts of anthropogenic and natural stressors on the health of yellow perch, differential mRNA transcription profiles were examined in juvenile females collected from effluent-impacted and upstream sites with low or high infection levels of the larval trematode Apophallus brevis. Transcriptomics was used to identify biological pathways associated with environmental exposure. In total, 3463 isoforms were differentially transcribed between sites. Patterns reflecting the combined effects of stressors were numerically dominant, with a majority of downregulated transcripts (68%). The differentially expressed transcripts were associated with 27 molecular and cellular functions ranging from cellular development to xenobiotic metabolism and were involved in the development and function of 13 organ systems including hematological, hepatic, nervous, reproductive and endocrine systems. Based on RNA-seq results, sixteen genes were measured by qPCR. Significant differences were observed for six genes in fish exposed to both stressors combined, whereas parasites and effluent individually impacted the transcription of one gene. Lysozyme activity, lipid peroxidation, retinol-binding protein and glucose-6-phosphate dehydrogenase were selected as potential biomarkers of effects to study specific pathways of interest. Lipid peroxidation in perch liver was different between sites, parasite loads, and for combined stressors. Overall, results indicated that juvenile yellow perch responded strongly to combined parasite and effluent exposure, suggesting cumulative effects on immune responses, inflammation and lipid metabolism mediated by retinoid receptors. The present study highlight the importance of using a comprehensive approach combining transcriptomics and endpoints measured at higher levels of biological organization to better understand cumulative risks of contaminants and pathogens in aquatic ecosystems.
更多
查看译文
关键词
Wastewater effluents,Parasites,Perca flavescens,RNA-sequencing,Freshwater ecosystem,Ecotoxicogenomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要