Air-like plasmonics with ultralow-refractive-index silica aerogels

SCIENTIFIC REPORTS(2019)

引用 37|浏览29
暂无评分
摘要
The coupling of the surface plasmon near-field into the sensing medium is key to the sensitivity of surface plasmon-based sensing devices. A low-index dielectric is necessary for the sensing medium to support a highly-penetrating surface plasmon evanescent field that extends well into the dielectric medium. The air-like refractive index, n , of an aerogel substrate provides another dimension for ultralow-index plasmonic devices. In this paper, we experimentally observed an angular surface plasmon resonance dip at 74° with the ultralow-index aerogel substrate, as was expected from theory. We also demonstrated the comparatively high-sensitivity surface plasmon resonance wavelength, λ , while the change in Δ λ /Δ n with different substrates was studied in detail. A 740 nm-period metal grating was imprinted on aerogel ( n = 1.08) and polydimethylsiloxane (PDMS; n = 1.4) substrates. The ultraviolet–visible–near-infrared spectra were observed in the reflection mode on the grating, resulting in sensitivities of 740.2 and 655.9 nm/RIU for the aerogel and PDMS substrates, respectively. Numerical simulations were performed to understand the near-field of the surface plasmon, which demonstrated resonances well correlated with the experimentally observed results. The near-field due to excitation of the surface plasmon polaritons is observed to be more confined and to penetrate deeper into the sensing medium when a low-index substrate is used.
更多
查看译文
关键词
Metamaterials,Nanophotonics and plasmonics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要