Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks.

PHYSICAL REVIEW E(2019)

引用 25|浏览7
暂无评分
摘要
We characterize the influence of different intersection mixing rules for particle tracking simulations on transport properties through three-dimensional discrete fracture networks. It is too computationally burdensome to explicitly resolve all fluid dynamics within a large three-dimensional fracture network. In discrete fracture network (DFN) models, mass transport at fracture intersections is modeled as a subgrid scale process based on a local Peclet number. The two most common mass transfer mixing rules are (1) complete mixing, where diffusion dominates mass transfer, and (2) streamline routing, where mass follows pathlines through an intersection. Although it is accepted that mixing rules impact local mass transfer through single intersections, the effect of the mixing rule on transport at the fracture network scale is still unresolved. Through the use of explicit particle tracking simulations, we study transport through a quasi-two-dimensional lattice network and a three-dimensional network whose fracture radii follow a truncated power-law distribution. We find that the impact of the mixing rule is a function of the initial particle injection condition, the heterogeneity of the velocity field, and the geometry of the network. Furthermore, our particle tracking simulations show that the mixing rule can particularly impact concentrations on secondary flow pathways. We relate these local differences in concentration to reactive transport and show that streamline routing increases the average mixing rate in DFN simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要