Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water.

Journal of chromatography. A(2019)

Cited 36|Views15
No score
Abstract
Recently, water pollution caused by antibiotics is rapidly increasing. Thus, developing efficient, fast and sensitive detection methods for environmental antibiotics monitoring are still remaining elusive. Herein, a method for antibiotics analysis including lecofloxacin, pazcofloxacin and gatifloxacin in water by high performance liquid chromatography (HPLC) using molybdenum disulfide-graphene oxide-supported magnetic nanoparticles (Fe3O4/GO/MoS2) as the adsorbent of magnetic solid-phase extraction was developed. The as-prepared magnetic Fe3O4/GO/MoS2 nanocomposite exhibited good enrichment capability toward fluoroquinolone antibiotics and the analytes were absorbed within a short time ca. 2 min. The main drive forces of Fe3O4/GO/MoS2 nanocomposite and antibiotics were most likely attributed to hydrogen bonding and electrostatic attraction. A sensitive and effective MSPE-HPLC method was developed with low detection limits (LODs) ranging from 0.25 to 0.50 ng mL-1. The recoveries obtained from the analysis of water sample were between 85.6% and 106.1% with relative standard deviations (RSDs, n = 5) lower than 9.5%. The developed method has a good potential for the analysis of organic contaminants in water with low cost and high sensitivity. Therefore, this finding is a promising strategy for designing high efficiency and fast antibiotics detection system.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined