Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans.

PLOS GENETICS(2019)

引用 15|浏览8
暂无评分
摘要
The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C. neoformans. Ipl1 is shown to be required for timely breakdown of the nuclear envelope as well. Ipl1 is essential for viability and regulates structural integrity of microtubules. The compromised stability of cytoplasmic microtubules upon Ipl1 depletion results in a significant delay in kinetochore clustering and nuclear migration. By generating an in silico model of mitosis, we previously proposed that cytoplasmic microtubules and cortical dyneins promote atypical nuclear division in C. neoformans. Improving the previous in silico model by introducing additional parameters, here we predict that an effective cortical bias generated by cytosolic Bim1 and dynein regulates dynamics of kinetochore clustering and nuclear migration. Indeed, in vivo alterations of Bim1 or dynein cellular levels delay nuclear migration. Results from in silico model and localization dynamics by live cell imaging suggests that Ipl1 spatio-temporally influences Bim1 or/and dynein activity along with microtubule stability to ensure timely onset of nuclear division. Together, we propose that the timely breakdown of the nuclear envelope by Ipl1 allows its own nuclear entry that helps in spatio-temporal regulation of nuclear division during semi-open mitosis in C. neoformans. Author summary Unlike the model ascomycetous budding yeast Saccharomyces cerevisiae, microtubule organizing centers (MTOCs) coalesce to form the spindle pole body (SPB) in C. neoformans. This process also ensures unclustered kinetochores to gradually cluster in this organism. As C. neoformans cells enter mitosis, the nuclear envelope ruptures and the nucleus eventually moves to the daughter bud before division. Here, we combine cell and systems biology techniques to understand the key determinants of nuclear division in C. neoformans. We show that the evolutionarily conserved Aurora B kinase Ipl1 enters the nucleus during the mitotic phase as cells undergo semi-open mitosis. Ipl1 regulates dynamics of cytoplasmic microtubules, cytosolic proteins such as Bim1 and dynein-mediated cortical forces and integrity of the nuclear envelope to ensure timely kinetochore clustering and nuclear division in this medically relevant human pathogenic budding yeast.
更多
查看译文
关键词
cryptococcus neoformans,kinase,nuclear division,spatio-temporal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要