Water transport, perception, and response in plants

Journal of Plant Research(2019)

引用 64|浏览24
暂无评分
摘要
Sufficient water availability in the environment is critical for plant survival. Perception of water by plants is necessary to balance water uptake and water loss and to control plant growth. Plant physiology and soil science research have contributed greatly to our understanding of how water moves through soil, is taken up by roots, and moves to leaves where it is lost to the atmosphere by transpiration. Water uptake from the soil is affected by soil texture itself and soil water content. Hydraulic resistances for water flow through soil can be a major limitation for plant water uptake. Changes in water supply and water loss affect water potential gradients inside plants. Likewise, growth creates water potential gradients. It is known that plants respond to changes in these gradients. Water flow and loss are controlled through stomata and regulation of hydraulic conductance via aquaporins. When water availability declines, water loss is limited through stomatal closure and by adjusting hydraulic conductance to maintain cell turgor. Plants also adapt to changes in water supply by growing their roots towards water and through refinements to their root system architecture. Mechanosensitive ion channels, aquaporins, proteins that sense the cell wall and cell membrane environment, and proteins that change conformation in response to osmotic or turgor changes could serve as putative sensors. Future research is required to better understand processes in the rhizosphere during soil drying and how plants respond to spatial differences in water availability. It remains to be investigated how changes in water availability and water loss affect different tissues and cells in plants and how these biophysical signals are translated into chemical signals that feed into signaling pathways like abscisic acid response or organ development.
更多
查看译文
关键词
Water perception,Drought stress,Plant water relations,Stomatal regulation,Aquaporins,Hydropatterning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要