Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime

PHYSICAL REVIEW A(2016)

引用 7|浏览1
暂无评分
摘要
With an increasing coupling between light and mechanics, nonlinearities begin to play an important role in optomechanics. We solve the quantum dynamics of an optomechanical system in the multiphoton strong-coupling regime retaining nonlinear terms. This is achieved by performing a Schrieffer-Wolff transformation on the Hamiltonian including driving terms. The approach is valid away from the red-and blue-sideband drive. We show that the mechanical resonator displays self-sustained oscillations in regimes where the linear model predicts instabilities and that the amplitude of these oscillations is limited by the nonlinear terms. Related oscillations of the photon number are present due to frequency mixing of the shifted mechanical and cavity frequencies. This leads to additional peaks in the cavity's spectral density. Furthermore, we show that it is possible to create phonon states with sub-Poissonian statistics when the system is red detuned. This result is valid even with strong driving and with initial coherent states.
更多
查看译文
关键词
Nonlinear Optics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要