Enhanced performance of alkali-modified BiWO/BiTiO toward photocatalytic oxidation of HCHO under visible light.

Environmental science and pollution research international(2019)

引用 3|浏览1
暂无评分
摘要
Photocatalytic oxidation of formaldehyde (HCHO) is considered as one of the promising ways to resolve indoor air HCHO pollution. TiO2 has been well known as the most extended application in photocatalysis due to its strong oxidizing ability and stability. Owing to high activity under visible light irradiation, TiO2 and Bi2O3 doping mixed with Bi2WO6 was analyzed in this study. The formation of two kinds of heterojunction caused efficient charge separation, leading to the effective reduction in the recombination of photo-generated electron and hole. The special structure and enhanced performance of these catalysts were analyzed. For the first time, the loading of alkali salts was researched for photocatalytic oxidation. In order to understand the reaction mechanism of alkali salts enhanced effects, the catalysts were investigated by using BET, XRD, UV–Vis, FT-IR, SEM, and XPS. The results found more than 2 wt% of Na2SO4 loading and the mixed methods with different solutions were key factors affecting the performance of catalysts. Nearly 92% HCHO conversion could be completed over Bi2WO6/Bi0.15Ti0.85O2 (Na2SO4), and the concentration of HCHO was only 0.07 mg/m3 for 24 h, which was below the limit of specification in China. The results also indicated that the solution mixing method was more favorable to increase the HCHO conversion due to decrease the size of Bi0.15Ti0.85O2 particles. The catalysts with Na2SO4 loading provided more surface-adsorbed oxygen that facilitated the desorption of CO2 and markedly increased the photocatalytic oxidation of HCHO.
更多
查看译文
关键词
Photocatalytic oxidation, HCHO, Catalysts, Alkali-modification, Visible light, Air pollution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要