Polar Localization of the Borate Exporter BOR1 Requires AP2-Dependent Endocytosis.

PLANT PHYSIOLOGY(2019)

引用 59|浏览24
暂无评分
摘要
Boron (B) is an essential element in plants but is toxic when it accumulates to high levels. In root cells of Arabidopsis (Arabidopsis thaliana), the borate exporter BOR1 is polarly localized in the plasma membrane toward the stele side for directional transport of B. Upon high-B supply, BOR1 is rapidly internalized and degraded in the vacuole. The polar localization and B-induced vacuolar sorting of BOR1 are mediated by endocytosis from the plasma membrane. To dissect the endocytic pathways mediating the polar localization and vacuolar sorting, we investigated the contribution of the clathrin adaptor protein, ADAPTOR PROTEIN2 (AP2) complex, to BOR1 trafficking. In the mutants lacking mu- or sigma-subunits of the AP2 complex, the polar localization and constitutive endocytosis of BOR1 under low-B conditions were dramatically disturbed. A coimmunoprecipitation assay showed association of the AP2 complex with BOR1, while it was independent of Yxx Phi sorting motifs, which are in a cytosolic loop of BOR1. A yeast two hybrid assay supported the interaction of the AP2 complex mu-subunit with the C-terminal tail but not with the Yxx Phi motifs in the cytosolic loop of BOR1. Intriguingly, lack of the AP2 subunit did not affect the B-induced rapid internalization/vacuolar sorting of BOR1. Consistent with defects in the polar localization, the AP2 complex mutants showed hypersensitivity to B deficiency. Our results indicate that AP2-dependent endocytosis maintains the polar localization of BOR1 to support plant growth under low-B conditions, whereas the B-induced vacuolar sorting of BOR1 is mediated through an AP2-independent endocytic pathway.
更多
查看译文
关键词
borate exporter bor1,endocytosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要