Task-Dependent Coordination Levels of SmI2

JOURNAL OF ORGANIC CHEMISTRY(2019)

Cited 5|Views6
No score
Abstract
Ligation plays a multifaceted role in the chemistry of SmI2. Depending on the ligand, two of its major effects are increasing the reduction potential of SmI2, and in the case of a ligand, which is also a proton donor, it may also enhance the reaction by protonation of the radical anion generated in the preceding step. It turns out that the number of ligand molecules that are needed to maximize the reduction potential of SmI2 is significantly smaller than the number of ligand molecules needed for a maximal enhancement of the protonation rate. In addition to the economical use of the ligand, this information can also be utilized as a diagnostic tool for the reaction mechanism in differentiating between single and multistep processes. The possible pitfalls in applying this diagnostic tool to PCET and cyclization reactions are discussed.
More
Translated text
Key words
smi<sub>2</sub>,levels,task-dependent
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined