Impacts of a millennium drought on butterfly faunal dynamics

Climate Change Responses(2018)

引用 24|浏览12
暂无评分
摘要
Background Climate change is challenging plants and animals not only with increasing temperatures, but also with shortened intervals between extreme weather events. Relatively little is known about diverse assemblages of organisms responding to extreme weather, and even less is known about landscape and life history properties that might mitigate effects of extreme weather. Our aim was to address this knowledge gap using a multi-decadal dataset of 163 butterfly species that recently experienced a millennium-scale drought. To understand faunal dynamics in the context of the millennium drought, we investigated the behavior of phenology (including date of first flight), species richness and diversity indices through time at 10 study sites spanning an elevational gradient. Linear models were developed to understand the differential sensitivity of butterflies to climate at low and high elevations. Results Dates of first flight advanced across the elevational gradient during the drought, leading to an overall expansion of the flight window at low elevations and a compression of the flight window in the mountains. The number of species observed per year increased at lower elevations but decreased at higher elevations, apparently as a consequence of extreme sensitivity to hot and dry conditions. Conclusion Montane populations may be more sensitive to climatic extremes than expected based on availability of microclimates and spatial heterogeneity, while low-elevation populations (despite existing in degraded habitats) are buffered by life history plasticity.
更多
查看译文
关键词
Butterflies,Climate change,Drought,Extreme weather,Mediterranean climate,Phenology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要