Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel

Acta Metallurgica Sinica (English Letters)(2018)

引用 15|浏览40
暂无评分
摘要
The hot deformation characteristics and the corrosion behavior of a high-strength low-alloy (HSLA) steel were investigated at deformation temperatures ranging from 800 to 1100 °C and strain rates ranging from 0.1 to 10 s −1 using an MMS-200 thermal simulation testing machine. Based on the flow curves from the experiment, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. The flow stress decreased with increasing deformation temperature and decreasing strain rate. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The hot deformation activation energy of HSLA steel in this work was 351.87 kJ/mol. The work hardening rate was used to determine the critical stress (strain) or the peak stress (strain). The dependence of these characteristic values on the Zener–Hollomon parameter was found. A dynamic recrystallization kinetics model of the tested HSLA steel was constructed, and the validity of the model was confirmed by the experimental results. Observation of the microstructures indicated that the grain size increased with increasing deformation temperature, which led to a lowered corrosion resistance of the specimens.
更多
查看译文
关键词
Dynamic recrystallization,Potentiodynamic polarization,Hot deformation,Flow stress,High-strength low-alloy steel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要