Live Human Assessment Of Depth-Dependent Corneal Displacements With Swept-Source Optical Coherence Elastography

PLOS ONE(2018)

Cited 40|Views10
No score
Abstract
PurposeTo assess depth-dependent corneal displacements in live normal subjects using optical coherence elastography (OCE).MethodsA corneal elastography method based on swept-source optical coherence tomography (OCT) was implemented in a clinical prototype. Low amplitude corneal deformation was produced during OCT imaging with a linear actuator-driven lens coupled to force transducers. A cross-correlation algorithm was applied to track frame-by-frame speckle displacement across horizontal meridian scans. Intra-measurement force and displacement data series were plotted against each other to produce local axial stiffness approximations, k, defined by the slope of a linear fit to the force/displacement data (ignoring non-axial contributions from corneal bending). Elastographic maps displaying local k values across the cornea were generated, and the ratio of mean axial stiffness approximations for adjacent anterior and posterior stromal regions, k(a)/k(p), was calculated. Intraclass correlation coefficients (ICC) were used to estimate repeatability.ResultsSeventeen eyes (ten subjects) were included in this prospective first-in-humans translational study. The ICC was 0.84. Graphs of force vs. displacement demonstrated that, for simultaneously acquired measurements involving the same applied force, anterior stromal displacements were lower (suggesting stiffer behavior) than posterior stromal displacements. Mean k(a) was 0.016 +/- 0.004 g/mm and mean k(p) was 0.014 +/- 0.004 g/mm, giving a mean k(a)/k(p) ratio of 1.123 +/- 0.062.ConclusionOCE is a clinically feasible, non-invasive corneal biomechanical characterization method capable of resolving depth-dependent differences in corneal deformation behavior. The anterior stroma demonstrated responses consistent with stiffer properties in compression than the posterior stroma, but to a degree that varied across normal eyes. The clinical capability to measure these differences has implications for assessing the biomechanical impact of corneal refractive surgeries and for ectasia risk screening applications.
More
Translated text
Key words
optical,depth-dependent,swept-source
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined