Impairment of chaperone-mediated autophagy affects neuronal homeostasis through altered expression of DJ-1 and CRMP-2 proteins.

Molecular and cellular neurosciences(2018)

引用 11|浏览17
暂无评分
摘要
Chaperone-mediated autophagy (CMA) is a substrate-specific mode of lysosomal proteolysis, with multiple lines of evidence connecting its dysfunction to both ageing and disease. We have recently shown that CMA impairment through knock-down of the lysosomal receptor LAMP2A is detrimental to neuronal viability in vivo; however, it is not clear which subset of proteins regulated by the CMA pathway mediate such changes. In this study, we have manipulated CMA function through alterations of LAMP2A abundance in primary rat cortical neurons, to identify potential changes to the neuronal proteome occurring prior to neurotoxic effects. We have identified a list of proteins with significant, >2-fold change in abundance following our manipulations, of which PARK7/DJ-1 - an anti-oxidant implicated in hereditary forms of Parkinson's Disease (PD), and DPYSL2/CRMP-2 - a microtubule-binding phosphoprotein involved in schizophrenia pathogenesis - were both found to have measurable effects on neuronal homeostasis and phenotype. Taken together, this study describes alterations in the abundance of neuronal proteins involved in neuropsychiatric disorders upon CMA manipulation, and suggests that such alterations may in part be responsible for the neurodegeneration observed upon CMA impairment in vivo.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要