In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration

SCIENTIFIC REPORTS(2018)

引用 30|浏览11
暂无评分
摘要
The zone of calcified cartilage (ZCC) is the mineralized region between the hyaline cartilage and subchondral bone and is critical in cartilage repair. A new non-stoichiometric calcium silicate (10% Ca substituted by Mg; CSi-Mg10) has been demonstrated to be highly bioactive in an osteogenic environment in vivo . This study is aimed to systematically evaluate the potential to regenerate osteochondral interface with different amount of Ca-Mg silicate in hydrogel-based scaffolds, and to compare with the scaffolds containing conventional Ca-phosphate biomaterials. Hydrogel-based porous scaffolds combined with 0–6% CSi-Mg10, 6% β-tricalcium phosphate (β-TCP) or 6% nanohydroxyapatite (nHAp) were made with three-dimensional (3D) printing. An increase in CSi-Mg10 content is desirable for promoting the hypertrophy and mineralization of chondrocytes, as well as cell proliferation and matrix deposition. Osteogenic and chondrogenic induction were both up-regulated in a dose-dependent manner. In comparison with the scaffolds containing 6% β-TCP or nHAp, human deep zone chondrocytes (hDZCs) seeded on CSi-Mg10 scaffold of equivalent concentration exhibited higher mineralization. It is noteworthy that the hDZCs in the 6% CSi-Mg10 scaffolds maintained a higher expression of the calcified cartilage zone specific extracellular matrix marker and hypertrophic marker, collagen type X. Immunohistochemical and Alizarin Red staining reconfirmed these findings. The study demonstrated that hydrogel-based hybrid scaffolds containing 6% CSi-Mg10 are particularly desirable for inducing the formation of calcified cartilage.
更多
查看译文
关键词
Bioinspired materials,Tissue engineering,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要