Well-Designed Phosphine Urea Ligand For Highly Diastereo- And Enantioselective 1,3-Dipolar Cycloaddition Of Methacrylonitrile: A Combined Experimental And Theoretical Study

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2019)

引用 65|浏览14
暂无评分
摘要
A novel chiral phosphine urea bifunctional ligand has been developed for Cu-catalyzed asymmetric 1,3-dipolar cycloaddition of iminoesters with methacrylonitrile, a long-standing challenging substrate in asymmetric catalysis. Distortion interaction energy analysis based on density functional theory (DFT) calculations reveals that the distortion energy plays an important role in the observed enantioselectivity, which can be attributed to the steric effect between the phosphine ligand and the dipole reactant. DFT calculations also indicate that nucleophilic addition is the enantioselectivity-determining step and hydrogen bonding between the urea moiety and methacrylonitrile assists in control of the diastereo- and enantioselectivity. By a combination of metal catalysis and organocatalysis, excellent diastereo- and enantioselectivities (up to 99:1 diastereomeric ratio, 99% enantiomeric excess) as well as good yields are achieved. A wide range of substitution patterns of both iminoester and acrylonitrile is tolerated by this catalyst system, providing access to a series of highly substituted chiral cyanopyrrolidines with up to two quaternary stereogenic centers. The synthetic utility is demonstrated by enantioselective synthesis of antitumor agent ETP69 with a pivotal nitrile pharmacophore and an all-carbon quaternary stereogenic center.
更多
查看译文
关键词
Asymmetric Synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要