Numerical ability in fish species: preference between shoals of different sizes varies among singletons, conspecific dyads and heterospecific dyads

Animal cognition(2018)

引用 8|浏览12
暂无评分
摘要
Group living confers ecological benefits, and the associated fitness gain may be positively related to the size of the group. Thus, the ability to discriminate numerical differences may confer important fitness advantages in social fish. There is evidence that this ability can be improved by behavioral interactions among individuals of the same species. Here, we looked for this effect in both conspecific and heterospecific dyads. In Chinese bream and grass carp, we measured the sociability and shoal preferences of singletons, conspecific dyads and heterospecific dyads presented with different numerical comparisons (0 vs 8, 2 vs 8, 4 vs 8, 6 vs 8 and 8 vs 8). Chinese bream generally showed higher sociability than did grass carp, but grass carp in heterospecific dyads showed improved sociability that was similar to that of Chinese bream. Among the comparisons, both grass carp and Chinese bream singletons could only discriminate the comparison of 2 vs 8, suggesting lower quantitative abilities in these fish species compared to other fish species. Grass carp dyads were more successful in discriminating between 6 and 8 than were singletons, although no such improvement was observed in their discrimination between 4 and 8. In contrast, numerical ability did not vary between singletons and conspecific dyads in Chinese bream. More interestingly, Chinese bream and grass carp in heterospecific groups could discriminate between 4 and 8, but neither species showed a preference when presented with 6 and 8. Our results suggested that interaction between conspecific grass carp might improve their joint numerical ability, and a similar process might occur in Chinese bream in heterospecific dyads. However, the mechanism underlying the differences in improvements in numerical ability requires further investigation. The improved cognitive ability of heterospecific dyads might yield important fitness advantages for predator avoidance and efficient foraging in the wild.
更多
查看译文
关键词
Numerical ability,Cyprinid,Collective intelligence,Shoal preference,Meritocratic leadership,Many-wrongs principle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要