谷歌浏览器插件
订阅小程序
在清言上使用

The Transient Receptor Potential Channel, Vanilloid 5, Induces Chondrocyte Apoptosis via Ca2+ CaMKII-Dependent MAPK and Akt/ mTOR Pathways in a Rat Osteoarthritis Model.

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY(2018)

引用 17|浏览1
暂无评分
摘要
Background/Aims: Chondrocyte apoptosis is a central pathological feature of cartilage in osteoarthritis (OA). Accumulating evidence suggests that calcium ions (Ca2+) are an important regulator of apoptosis. Previously, we reported that the transient receptor potential channel vanilloid (TRPV5) is upregulated in monoiodoacetic acid (MIA)-induced OA articular cartilage. Methods: The protein levels of TRPV5, phosphorylated Ca2+/calmodulin-dependent kinase II (p-CaMKII), and total CaMKII were detected in vivo using western blotting techniques. Primary chondrocytes were isolated and cultured in vitro. Then, p-CAMKII was immunolocalized by immunofluorescence in chondrocytes. Fluo-4AM staining was used to assess intracellular Ca2+. Annexin V-fluorescein isothiocyanate / propidium iodide flow cytometric analysis was performed to determine chondrocyte apoptosis. Western blotting techniques were used to measure the expression of apoptosis-related proteins. Results: We found that ruthenium red (aTRPV5inhibitor) or(1-[N, O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperaze (KN-62) (an inhibitor of Ca2+/ calmodulin-dependent kinase II (CaMKII) phosphorylation) can relieve or even reverse OA in vivo. We found that TRPV5 has a specific role in mediating extracellular Ca2+ influx leading to chondrocyte apoptosis in vitro. The apoptotic effect in chondrocytes was inhibited by KN-62. We found that activated p-CaMKII could elicit the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal kinase, and p38, three important regulators of the mitogen-activated protein kinase (MAPK) cascade. Moreover, we also showed that activated p-CaMKII could elicit the phosphorylation of protein kinase B (Akt) and two important downstream regulators of mammalian target of rapamycin (mTOR): 4E-binding protein, and S61 kinase. Conclusion: Our results demonstrate that upregulated TRPV5 may be an important initiating factor that activates CaMKII phosphorylation via the mediation of Ca2+ influx. In turn, activated p-CaMKII plays a critical role in chondrocyte apoptosis via MAPK and Akt/mTOR pathways. (C) 2018 The Author(s) Published by S. Karger AG, Basel
更多
查看译文
关键词
TRPV5,Ca2+,P-CaMKII,Chondrocyte apoptosis,Osteoarthritis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要