Effects of nitric oxide on steroidogenesis and apoptosis in goat luteinized granulosa cells.

Theriogenology(2019)

引用 17|浏览5
暂无评分
摘要
The aim of this study was to investigate effects of nitric oxide (NO) on steroidogenesis and apoptosis in goat luteinized granulosa cells (LGCs). We cultured goat LGCs from healthy follicles in culture medium supplemented with the NO donor sodium nitroprusside (SNP) or the NO synthase inhibitor Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME), then examined steroid synthesis, oxidative stress and apoptosis in vitro. The results showed that SNP treatment significantly increased the cGMP concentration in the LGCs (P < 0.05), whereas the l-NAME treatment significantly decreased cGMP concentration (P < 0.05). Then Inhibition of NO production significantly inhibited the expression of CYP19A1, a key gene that is involved in sex steroid hormones synthesis and is responsible for the decrease of E2. Inhibition of NO production resulted in an increased percentage of apoptosis, which was accompanied by upregulating expression levels of apoptosis-related markers BAX, CASP3 and CASP9. These data indicate that NO is required for goat LGCs steroidogenesis and cell survival. Furthermore, Inhibition of NO production decreased the expression of mitochondrial biogenesis related genes and proteins (PPARGC1A, NRF-1 and TFAM) and the mtDNA copy number. Simultaneously, inhibition of NO production suppressed the transcription and translation of SOD, GPX1, and CAT, and decreased the glutathione level and increased the 8-OHdG level. However, SNP treatment increased the expression of genes involved in mitochondrial function and biogenesis, and elevated the anti-oxidant stress system and steroid synthesis. Together, our results indicate that NO may up-regulate the expression of PPARGC1A and its downstream factors through the cGMP pathway, thereby decreasing granulosa cell apoptosis, and may participate in the regulation of granulocyte steroid production through the mitochondrial-dependent pathway.
更多
查看译文
关键词
Goat luteinized granulosa cells,Nitric oxide,Mitochondria,Steroidogenesis,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要