Atropisomerism and Conformational Equilibria: Impact on PI3Kδ Inhibition of 2-((6-Amino-9H-purin-9-yl)methyl)-5-methyl-3-(o-tolyl)quinazolin-4(3H)-one (IC87114) and Its Conformationally Restricted Analogs.

JOURNAL OF MEDICINAL CHEMISTRY(2017)

引用 15|浏览39
暂无评分
摘要
IC87114 [compound 1, (2((6-amino-9H-purin-9-yl)methyl)-5-methyl-3-(o-tolyl)quinazolin-4(3H)-one)] is a potent PI3K inhibitor selective for the delta isoform. As predicted by molecular modeling calculations, rotation around the bond connecting the quinazolin-4(3H)-one nucleus to the o-tolyl is sterically hampered, which leads to separable conformers with axial chirality (i.e., atropisomers). After verifying that the aS and aR isomers of compound 1 do not interconvert in solution, we investigated how biological activity is influenced by axial chirality and conformational equilibrium. The aS and aR. atropisomers of 1 were equally active in the PI3K delta assay. Conversely, the introduction of a Methyl group at the methylene hinge connecting the 6-amino-9H-purin-9-yl pendant to the quinazolin-4(3H)-one nucleus of both aS and aR isomers of 1 had a critical effect on the inhibitory activity, indicating that modulation of the conformational space accessible for the two bonds departing from the central methylene considerably affects the binding of compound 1 analogues to PI3K delta enzyme.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要