No evidence for strong cytonuclear conflict over sex allocation in a simultaneously hermaphroditic flatworm

BMC evolutionary biology(2017)

Cited 13|Views5
No score
Abstract
Cytoplasmic sex allocation distorters, which arise from cytonuclear conflict over the optimal investment into male versus female reproductive function, are some of the best-researched examples for genomic conflict. Among hermaphrodites, many such distorters have been found in plants, while, to our knowledge, none have been clearly documented in animals.Here we provide a quantitative test for cytonuclear conflict over sex allocation in the simultaneously hermaphroditic flatworm Macrostomum lignano. We used a quantitative genetic breeding design, employing pair-wise crosses of 2 × 15 independent inbred lines, to partition the phenotypic variance in several traits (including sex allocation) into its nuclear and cytoplasmic components.Although the nuclear genetic background had a significant effect on all traits analyzed, we found significant cytoplasmic genetic variation only for ovary size, there explaining just 4.1% of the variance. A subsequent statistical power analysis showed that the experimental design had considerable power to detect cytonuclear interactions.We conclude that there were no strong effects of cytonuclear conflict in the studied populations, possibly because the usually compact mitochondrial genomes in animals have a lower evolvability than the large mitochondrial genomes in plants or because the sampled populations currently do not harbor variation at putative distorter and/or the restorer loci.
More
Translated text
Key words
Genomic conflict,Cytonuclear conflict,Sex allocation,Cytoplasmic male sterility,Animal,Simultaneous hermaphrodite
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined