Mantisbot is a robotic model of visually guided motion in the praying mantis.

Arthropod Structure & Development(2017)

引用 27|浏览26
暂无评分
摘要
Insects use highly distributed nervous systems to process exteroception from head sensors, compare that information with state-based goals, and direct posture or locomotion toward those goals. To study how descending commands from brain centers produce coordinated, goal-directed motion in distributed nervous systems, we have constructed a conductance-based neural system for our robot MantisBot, a 29 degree-of-freedom, 13.3:1 scale praying mantis robot. Using the literature on mantis prey tracking and insect locomotion, we designed a hierarchical, distributed neural controller that establishes the goal, coordinates different joints, and executes prey-tracking motion. In our controller, brain networks perceive the location of prey and predict its future location, store this location in memory, and formulate descending commands for ballistic saccades like those seen in the animal. The descending commands are simple, indicating only 1) whether the robot should walk or stand still, and 2) the intended direction of motion. Each joint's controller uses the descending commands differently to alter sensory-motor interactions, changing the sensory pathways that coordinate the joints' central pattern generators into one cohesive motion. Experiments with one leg of MantisBot show that visual input produces simple descending commands that alter walking kinematics, change the walking direction in a predictable manner, enact reflex reversals when necessary, and can control both static posture and locomotion with the same network.
更多
查看译文
关键词
Computational neuroscience,Robotics,Praying mantis,Descending commands,Locomotion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要