Anti-inflammatory Function of High-Density Lipoproteins via Autophagy of IκB Kinase

Cellular and Molecular Gastroenterology and Hepatology(2015)

引用 0|浏览2
暂无评分
摘要
Background & Aims Plasma levels of high-density lipoprotein (HDL) cholesterol are frequently found decreased in patients with inflammatory bowel disease (IBD). Therefore, and because HDL exerts anti-inflammatory activities, we investigated whether HDL and its major protein component apolipoprotein A-I (apoA-I) modulate mucosal inflammatory responses in vitro and in vivo. Methods The human intestinal epithelial cell line T84 was used as the in vitro model for measuring the effects of HDL on the expression and secretion of tumor necrosis factor (TNF), interleukin-8 (IL-8), and intracellular adhesion molecule (ICAM). Nuclear factor-κB (NF-κB)-responsive promoter activity was studied by dual luciferase reporter assays. Mucosal damage from colitis induced by dextran sodium sulphate (DSS) and 2,4,6-trinitrobenzenesulfonic acid (TNBS) was scored by colonoscopy and histology in apoA-I transgenic (Tg) and apoA-I knockout (KO) and wild-type (WT) mice. Myeloperoxidase (MPO) activity and TNF and ICAM expression were determined in intestinal tissue samples. Autophagy was studied by Western blot analysis, immunofluorescence, and electron microscopy. Results HDL and apoA-I down-regulated TNF-induced mRNA expression of TNF, IL-8, and ICAM, as well as TNF-induced NF-κB-responsive promoter activity. DSS/TNBS-treated apoA-I KO mice displayed increased mucosal damage upon both colonoscopy and histology, increased intestinal MPO activity and mRNA expression of TNF and ICAM as compared with WT and apoA-I Tg mice. In contrast, apoA-I Tg mice showed less severe symptoms monitored by colonoscopy and MPO activity in both the DSS and TNBS colitis models. In addition, HDL induced autophagy, leading to recruitment of phosphorylated IκB kinase to the autophagosome compartment, thereby preventing NF-κB activation and induction of cytokine expression. Conclusions Taken together, the in vitro and in vivo findings suggest that HDL and apoA-I suppress intestinal inflammation via autophagy and are potential therapeutic targets for the treatment of IBD.
更多
查看译文
关键词
Apolipoprotein A-I,Autophagy,Inflammatory Bowel Disease,NF-κB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要