Statistical Modeling Applied To Deformation-Relaxation Processes In A Composite Biopolymer Network Induced By Magnetic Field

PLOS ONE(2017)

引用 6|浏览12
暂无评分
摘要
This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension.
更多
查看译文
关键词
composite biopolymer network induced,magnetic field,deformation-relaxation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要