谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Increased heterocyst frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen production at high light intensity and high cell density

Applied microbiology and biotechnology(2017)

引用 23|浏览5
暂无评分
摘要
The effects of increasing the heterocyst-to-vegetative cell ratio on the nitrogenase-based photobiological hydrogen production by the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were studied. Using the uptake hydrogenase-disrupted mutant (ΔHup) as the parent, a deletion-insertion mutant (PN1) was created in patN , known to be involved in heterocyst pattern formation and leading to multiple singular heterocysts (MSH) in Nostoc punctiforme strain ATCC 29133. The PN1 strain showed heterocyst differentiation but failed to grow in medium free of combined-nitrogen; however, a spontaneous mutant (PN22) was obtained on prolonged incubation of PN1 liquid cultures and was able to grow robustly on N 2 . The disruption of patN was confirmed in both PN1 and PN22 by PCR and whole genome resequencing. Under combined-nitrogen limitation, the percentage of heterocysts to total cells in the PN22 filaments was 13–15 and 16–18% under air and 1% CO 2 -enriched air, respectively, in contrast to the parent ΔHup which formed 6.5–11 and 9.7–13% heterocysts in these conditions. The PN22 strain exhibited a MSH phenotype, normal diazotrophic growth, and higher H 2 productivity at high cell concentrations, and was less susceptible to photoinhibition by strong light than the parent ΔHup strain, resulting in greater light energy utilization efficiency in H 2 production on a per unit area basis under high light conditions. The increase in MSH frequency shown here appears to be a viable strategy for enhancing H 2 productivity by outdoor cultures of cyanobacteria in high-light environments.
更多
查看译文
关键词
Cyanobacteria,Heterocyst,Anabaena,Hydrogen production,patN,Nitrogenase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要