Celastrol Attenuates Cadmium-Induced Neuronal Apoptosis via Inhibiting Ca -CaMKII-Dependent Akt/mTOR Pathway.

Journal of cellular physiology(2017)

引用 31|浏览3
暂无评分
摘要
Cadmium (Cd), an environmental and industrial pollutant, affects the nervous system and consequential neurodegenerative disorders. Recently, we have shown that celastrol prevents Cd-induced neuronal cell death partially by suppressing Akt/mTOR pathway. However, the underlying mechanism remains to be elucidated. Here, we show that celastrol attenuated Cd-elevated intracellular-free calcium ([Ca2+](i)) level and apoptosis in neuronal cells. Celastrol prevented Cd-induced neuronal apoptosis by inhibiting Akt-mediated mTOR pathway, as inhibition of Akt with Akt inhibitor X or ectopic expression of dominant negative Akt reinforced celastrol's prevention of Cd-induced phosphorylation of S6K1/4E-BP1 and cell apoptosis. Furthermore, chelating intracellular Ca2+ with BAPTA/AM or preventing [Ca2+](i) elevation using EGTA potentiated celastrol's repression of Cd-induced [Ca2+](i) elevation and consequential activation of Akt/mTOR pathway and cell apoptosis. Moreover, celastrol blocked Cd-elicited phosphorylation of CaMKII, and pretreatment with BAPTA/AM or EGTA enhanced celastrol's suppression of Cd-increased phosphorylation of CaMKII in neuronal cells, implying that celastrol hinders [Ca2+](i)-mediated CaMKII phosphorylation. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of Akt/mTOR pathway and cell apoptosis, and this was strengthened by celastrol. Taken together, these data demonstrate that celastrol attenuates Cd-induced neuronal apoptosis via inhibiting Ca2+-CaMKII-dependent Akt/mTOR pathway. Our findings underscore that celastrol may act as a neuroprotective agent for the prevention of Cd-induced neurodegenerative disorders. J. Cell. Physiol. 232: 2145-2157, 2017. (c) 2016 Wiley Periodicals, Inc.
更多
查看译文
关键词
apoptosis,inhibiting cadmium-induced,camkii-dependent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要