Chrome Extension
WeChat Mini Program
Use on ChatGLM

Predicting Concrete Roadway Contribution to Gamma-Ray Background in Radiation Portal Monitor Systems

NUCLEAR TECHNOLOGY(2014)

Cited 3|Views5
No score
Abstract
The collapse of the Soviet Union ushered in an era of interest in the security of the radiological and nuclear material holdings of the Russian Federation and other countries of the Former Soviet Union. Additionally, the increasing sophistication of international criminal and terrorist organizations highlighted the need to secure these materials and prevent them from being smuggled from their point of origin and across international boundaries. To combat the growing threat of radiological and nuclear smuggling, radiation portal monitors (RPMs) are deployed at ports of entry (POEs) around the world to passively detect gamma and neutron radiation signatures from cargo and pedestrian traffic. In some locations, RPMs are reporting abnormally high gamma-ray background count rates, a situation that has been attributed, in part, to the building materials surrounding the RPMs. The primary objective of this work was to determine the impact of different types of concrete on the gamma-ray background readings in a particular RPM. Secondary objectives include developing an adaptable model to estimate the gamma-ray background contribution from any composition of concrete in any RPM configuration and determining the elemental composition of different concrete samples through neutron activation analysis (NAA) techniques. The specific activities of K-40 and isotopes from the U-238 and Th-232 decay series were determined with a high-purity germanium detector and computer-generated calibration files. Through NM, 34 elemental compositions were determined for six concrete samples from three different parent slabs. The total weight percentages determined were 84% to 100% of the total mass of the samples. The Monte Carlo N-Particle (MCNP) transport code was used to simulate the RPM response to the different concrete slabs. The MCNP model was validated by comparing actual and simulated detector responses to Cs-137 check sources of varying strengths. For all validation cases, the MCNP estimates were 6% to 16% less than the value obtained from the actual RPM data. This work shows that it is possible to estimate the gamma-ray response of an RPM to the underlying concrete roadway. Knowing the amount of this contribution will allow RPM customers to choose suitable foundation materials before installation and accurately set alarm thresholds. This could ultimately increase the ability of RPMs to detect radiation at POEs, thereby increasing the probability of a seizure of smuggled radiological and nuclear materials.
More
Translated text
Key words
neutron activation analysis,nuclear smuggling,radiation portal monitor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined