Anesthetic isoflurane attenuates activated microglial cytokine-induced VSC4.1 motoneuronal apoptosis.

AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH(2016)

Cited 27|Views6
No score
Abstract
Isoflurane (ISO) exhibits neuroprotective effects against inflammation and apoptosis. However, the role of ISO in motoneuronal apoptosis induced by activated microglia remains poorly studied. We investigated the protective effects of ISO on the apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons induced by lipopolysaccharide (LPS)-activated BV-2 microglia. Results indicated that ISO inhibited NF-kappa B activation and pro-inflammatory cytokine release in LPS-treated BV-2 microglia. Conditioned medium (CM) from activated BV-2 cells treated by ISO directly prevented VSC4.1 motoneurons from LPS-CM-induced neuronal apoptosis, as determined by the following: reductions in caspase-8, caspase-9, and caspase-3 activities; downregulation of pro-apoptotic procaspase-8, cleaved (cl)-caspase-8, procaspase-9, cl-caspase-9, caspase-3, cl-caspase-3, Bid, Bax, and cytochrome c expression; and upregulation of anti-apoptotic Bcl-2 expression in LPS-CM-cultured VSC4.1 motoneurons. Findings demonstrated that ISO inhibits BV-2 microglia activation and alleviates VSC4.1 motoneuronal apoptosis induced by microglial activation. These effects suggest that ISO can be used as an alternative agent for reducing neuronal apoptosis.
More
Translated text
Key words
Isoflurane,LPS,BV-2 microglia,VSC4.1 motoneuron,NF-kappa B,apoptosis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined