谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems

Applied microbiology and biotechnology(2016)

引用 20|浏览2
暂无评分
摘要
The extrusion technology of blends formed by compounds with different physicochemical properties often results in new materials that present properties distinctive from its original individual constituents. Here, we report the use of melt extrusion of blends made from low-cost materials to produce a biodegradable foam suitable for use as an inoculant carrier of plant growth-promoting bacteria (PGPB). Six formulations were prepared with variable proportions of the raw materials; the resulting physicochemical and structural properties are described, as well as formulation performance in the maintenance of bacterial viability during 120 days of storage. Differences in blend composition influenced foam density, porosity, expansion index, and water absorption. Additionally, differences in the capability of sustaining bacterial viability for long periods of time were more related to the foam composition than to the resulting physicochemical characteristics. Microscopic analyses showed that the inoculant bacteria had firmly attached to the extruded material by forming biofilms. Inoculation assays using maize plants demonstrated that the bacteria attached to the extruded foams could survive in the soil for up to 10 days before maize sowing, without diminishing its ability to promote plant growth. The results presented demonstrate the viability of the new matrix as a biotechnological material for bacterial delivery not only in agriculture but also in other biotechnological applications, according to the selected bacterial strains.
更多
查看译文
关键词
Azospirillum brasilense,Bacterial immobilization,Biocomposites,Inoculants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要