Lack Of Aggregation Of Molecules On Ice Nanoparticles

JOURNAL OF PHYSICAL CHEMISTRY A(2015)

引用 26|浏览6
暂无评分
摘要
Multiple molecules adsorbed on the surface of nanosized ice particles can either remain isolated or form aggregates, depending on their mobility. Such (non)aggregation may subsequently drive the outcome of chemical reactions that play an important role in atmospheric chemistry or astrochemistry. We present a molecular beam experiment in which the controlled number of guest molecules is deposited on the water and argon nanoparticles in a pickup chamber and their aggregation is studied mass spectrometrically. The studied molecules (HCl, CH3Cl, CH3CH2CH2Cl, C6H5Cl, CH4, and C6H6) form large aggregates on argon nanoparticles. On the other hand, no aggregation is observed on ice nanoparticles. Molecular simulations confirm the experimental results; they reveal a high degree of aggregation on the argon nanoparticles and show that the molecules remain mostly isolated on the water ice surface. This finding will influence the efficiency of ice grain-mediated synthesis (e.g., in outer space) and is also important for the cluster science community because it shows some limitations of pickup experiments on water clusters.
更多
查看译文
关键词
molecules,aggregation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要