Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae)

SCIENTIFIC REPORTS(2018)

Cited 23|Views33
No score
Abstract
Quinoa has been highlighted as a promising crop to sustain food security. The selection of physiological traits that allow identification genotypes with high Nitrogen use efficiency (NUE) is a key factor to increase Quinoa cultivation. In order to unveil the underpinning mechanisms for N-stress tolerance in Quinoa, three genotypes with similar phenology, but different NUE were developed under high (HN) or low (LN) nitrogen conditions. N metabolism processes and photosynthetic performance were studied after anthesis and in correlation with productivity to identify principal traits related to NUE. We found that protein content, net photosynthesis and leaf dry-mass were determinant attributes for yield at both HN and LN conditions. Contrastingly, the enhancement of N related metabolites ( NH_4^+ , proline, betacyanins) and processes related with re-assimilation of NH_4^+ , including an increment of glutamine synthetase activity and up-regulation of CqAMT1 , 1 transporter expression in leaves, were negatively correlated with grain yield at both N conditions. Biochemical aspects of photosynthesis and root biomass were traits exclusively associated with grain yield at LN. The impact of N supply on seed quality is discussed. These results provide new insights towards the understanding the N metabolism of Quinoa.
More
Translated text
Key words
Quinoa Cultivation,Glutamine Synthetase,Seed Nitrogen Content,Betacyanin Content,Free Amino Acid Content
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined