Singly Charged Ion Source Designed Using Three-Dimensional Particle-In-Cell Method

REVIEW OF SCIENTIFIC INSTRUMENTS(2018)

引用 3|浏览23
暂无评分
摘要
A singly charged ion source (SCIS) has been designed using a newly developed three-dimensional particle-in-cell (PIC) code. The SCIS is to be used in an isotope separation on-line (ISOL) system that provides C-11 ions for heavy-ion cancer therapy with simultaneous verification of the dose distribution using positron emission tomography. The SCIS uses low-energy electron beams to produce singly charged carbon ions efficiently and maintain a high vacuum in the ISOL system. Because the SCIS has to realize a production efficiency of 1% if its carbon ions are to be used in the ISOL system, a suitable design for the SCIS was investigated by using the developed PIC code to study the beam trajectories of the electrons and extracted ions. The simulation results show that hollow electron beams are produced in the designed SCIS resulting in a high effective electron current. The results also predict that the designed SCIS would realize ion-production efficiencies (IPEs) of epsilon(SCIS) similar or equal to 6.7% for CO2+ production from CO2 gas and epsilon(SCIS) similar or equal to 0.1% for C+ production from CH4 gas. Moreover, to examine the validity of the developed code and confirm that the SCIS was able to be designed appropriately, the space-charge-limited current of the electron gun and the total IPE obtained by adding the IPEs of each ion were compared between the experiment and the simulation. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要