[Beneficial effects of renal denervation on pulmonary vascular remodeling in experimental pulmonary artery hypertension].

Zhonghua yi xue za zhi(2015)

引用 0|浏览1
暂无评分
摘要
OBJECTIVE:To explore the effects of renal sympathetic denervation (RSD) on pulmonary vascular remodeling in a model of pulmonary arterial hypertension (PAH). METHODS:According to the random number table, 24 beagles were randomized into control, PAH and PAH+RSD groups (n=8 each). The levels of neurohormone, echocardiogram and dynamics parameters were measured. Then 0.1 ml/kg dimethylformamide (control group) or 2 mg/kg dehydromonocrotaline (PAH and PAH+RSD groups) were injected. The PAH+RSD group underwent RSD after injection. At week 8 post-injection, the neurohormone levels, echocardiogram, dynamics parameters and pulmonary tissue morphology were observed. RESULTS:The values of right ventricular systolic pressure (RVSP) and pulmonary arterial systolic pressure (PASP) in PAH and PAH+RSD groups were both significantly higher than those in control group ((42.8±8.7), (30.8±6.8) vs (23.2±5.7) mmHg (1 mmHg=0.133 kPa) and (45.1±11.2), (32.6±7.9) vs (24.7±7.1) mmHg). Meanwhile, the values of RVSP and PASP in PAH group were higher than those in PAH+RSD group (all P<0.01). The levels of serum angiotensin II (Ang II) and endothelin-1 significantly increased after 8 weeks in PAH dogs ((228±41) vs (113±34) pg/ml and (135±15) vs (77±7) pg/ml, all P<0.01). And Ang II and endothelin-1 were higher in lung tissues of PAH group ((65±10) and (96±10) pg/ml) than in those of control group ((38±7) and (54±6) pg/ml) and PAH+RSD group ((46±8) and (67±9) pg/ml) (all P<0.01). Pulmonary tissues had marked collagen hyperplasia and lamellar corpuscles of type 2 alveolar cells were damaged more severely in PAH dogs than in PAH+RSD dogs. CONCLUSIONS:RSD suppresses pulmonary vascular remodeling and decreases pulmonary arterial pressure in experimental PAH. And the effect of RSD on PAH may contribute to decreased neurohormone levels.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要