Shikonin Exerts Antitumor Activity By Causing Mitochondrial Dysfunction In Hepatocellular Carcinoma Through Pkm2-Ampk-Pgc1 Alpha Signaling Pathway

BIOCHEMISTRY AND CELL BIOLOGY(2019)

Cited 30|Views6
No score
Abstract
Shikonin, a naphthoquinone derivative isolated from the root of Lithospermum erythrorhizon, exhibits broad-spectrum antitumor activity via different molecular mechanisms. In this study, we investigated the effect of shikonin on mitochondrial dysfunction in hepatocellular carcinoma (HCC). Our results showed that shikonin inhibited the proliferation, migration, and invasiveness of HCCLM3 cells, and promoted cell apoptosis in a dose-dependent manner. More importantly, shikonin affected mitochondrial function by disrupting mitochondrial membrane potential and oxidative stress (OS) status. Furthermore, shikonin decreased the oxygen consumption rate of HCCLM3 cells, as well as the levels of ATP and metabolites involved in the tricarboxylic acid cycle (TCA cycle). We also investigated the molecular mechanisms underlying the regulation of mitochondrial function by shikonin as an inhibitor of PKM2. Shikonin decreased the expression of PKM2 in the mitochondria and affected other metabolic pathways (AMPK and PGC1 alpha pathways), which aggravated the oxidative stress and nutrient deficiency. Our results indicate a novel role of shikonin in triggering mitochondria dysfunction via the PKM2-AMPK-PGC1 alpha signaling pathway and provide a promising therapeutic approach for the treatment of HCC.
More
Translated text
Key words
shikonin, HCC, mitochondrial dysfunction, oxidative stress, nutrient deficiency
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined