Porous tissue strands: avascular building blocks for scalable tissue fabrication.

BIOFABRICATION(2019)

引用 24|浏览8
暂无评分
摘要
The scalability of cell aggregates such as spheroids, strands, and rings has been restricted by diffusion of nutrient and oxygen into their core. In this study, we introduce a novel concept in generating tissue building blocks with micropores, which represents an alternative solution for vascularization. Sodium alginate porogens were mixed with human adipose-derived stem cells, and loaded into tubular alginate capsules, followed by de-crosslinking of the capsules. The resultant cellular structure exhibited a porous morphology and formed cell aggregates in the form of strands, called 'porous tissue strands (pTSs).' Three-dimensional reconstructions show that pTSs were able to maintain similar to 25% porosity with a high pore interconnectivity (similar to 85%) for 3 weeks. Owing to the porous structure, pTSs showed up-regulated cell viability and proliferation rate as compared to solid counterparts throughout the culture period. pTSs also demonstrated self-assembly capability through tissue fusion yielding larger-scale patches. In this paper, chondrogenesis and osteogenesis of pTSs were also demonstrated, where the porous microstructure up-regulated both chondrogenic and osteogenic functionalities indicated by cartilage- and bone-specific immunostaining, quantitative biochemical assessment and gene expression. These findings indicated the functionality of pTSs, which possessed controllable porosity and self-assembly capability, and had great potential to be utilized as tissue building blocks in distinct applications such as cartilage and bone regeneration.
更多
查看译文
关键词
tissue strands,porosity,cell aggregates,micro-fabrication,adipose-derived stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要