Co-transport of graphene oxide and heavy metal ions in surface-modified porous media.

Chemosphere(2018)

引用 47|浏览8
暂无评分
摘要
The ability to predict the transport of heavy metal ions in porous media with different surface characteristics is crucial to protect groundwater quality and public health. In this study, the effects of graphene oxide (GO) on co-transport and remobilization of Pb2+ and Cd2+ in humic acid (HA), smectite, kaolinite, and ferrihydrite-coated sand media were evaluated via laboratory packed-column experiments. Scanning electron microscope and energy dispersive X-ray analysis showed that the surface morphology of the coated sands was quite different and that ∼56.7-89.9% of the surface was covered by the coating and the major elemental components were C, O, Si, Al, and Fe. GO exhibited high mobility in HA, kaolinite, and smectite-coated sand, but showed high retention in ferrihydrite-coated sand. While GO reduced the transport of Pb2+ and Cd2+, both metal ions also reduced the mobility of GO in coated-sand columns. Elution experiments revealed that GO led to the remobilization and release of the previously sorbed Pb2+ and Cd2+ from the coated sand. However, GO could not release Pb2+ and Cd2+ from smectite-coated sand columns, probably because smectite has stronger adsorption affinity to the heavy metals than GO. Derjaguin-Landau-Verwey-Overbeek calculations were employed and explained the GO transport behavior in the columns well. Furthermore, the advection-dispersion-reaction equation simulated the cotransport of Pb2+ and Cd2+ with GO in the coated sand well. These results are expected to provide insight into the potential impact of coexisting nanomaterials with contaminants in vulnerable soil and groundwater systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要