Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder.

Biological Psychiatry(2019)

引用 94|浏览31
暂无评分
摘要
BACKGROUND: Autism spectrum disorder (ASD) is behaviorally and biologically heterogeneous and likely represents a series of conditions arising from different underlying genetic, metabolic, and environmental factors. There are currently no reliable diagnostic biomarkers for ASD. Based on evidence that dysregulation of branched-chain amino acids (BCAAs) may contribute to the behavioral characteristics of ASD, we tested whether dysregulation of amino acids (AAs) was a pervasive phenomenon in individuals with ASD. This is the first article to report results from the Children's Autism Metabolome Project (CAMP), a large-scale effort to define autism biomarkers based on metabolomic analyses of blood samples from young children. METHODS: Dysregulation of AA metabolism was identified by comparing plasma metabolites from 516 children with ASD with those from 164 age-matched typically developing children recruited into the CAMP. ASD subjects were stratified into subpopulations based on shared metabolic phenotypes associated with BCAA dysregulation. RESULTS: We identified groups of AAs with positive correlations that were, as a group, negatively correlated with BCAA levels in ASD. Imbalances between these two groups of AAs identified three ASD-associated amino acid dysregulation metabotypes. The combination of glutamine, glycine, and ornithine amino acid dysregulation metabotypes identified a dysregulation in AA/BCAA metabolism that is present in 16.7% of the CAMP subjects with ASD and is detectable with a specificity of 96.3% and a positive predictive value of 93.5% within the ASD subject cohort. CONCLUSIONS: Identification and utilization of metabotypes of ASD can lead to actionable metabolic tests that support early diagnosis and stratification for targeted therapeutic interventions.
更多
查看译文
关键词
Amino acids,Autism,Biomarker,Diagnosis,Metabolomics,Metabotype
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要