Chrome Extension
WeChat Mini Program
Use on ChatGLM

Physiological, biochemical and morphoagronomic characterization of drought-tolerant and drought-sensitive bean genotypes under water stress

Physiology and molecular biology of plants : an international journal of functional plant biology(2018)

Cited 8|Views7
No score
Abstract
Water deficit is one of the main factors that reduce grain yield. A better understanding of the mechanisms related to this abiotic stress is a key aspect to design and act upon drought tolerance improvement in crop plants. Therefore, the major objective of this study was to investigate four common bean genotypes for drought tolerance and to establish their tolerance mechanisms. The experiment was carried out in a greenhouse, using the completely randomized design in a factorial arrangement (2 × 4), composed by 2 water conditions (well-watered and water deficit) and 4 cultivars, with six replicates per treatment. The four cultivars, two drought-sensitive (IAC Tybatã and BRS Pontal) and two drought-tolerant (IAPAR 81 and BAT 477), were evaluated for some physiological, biochemical and morphoagronomic traits. Drought promoted physiological and metabolic changes in the plants, reflecting on the morphoagronomic traits. Under water deficit, the genotype IAPAR 81 stood out from the others in terms of physiological characters, however, it presented a low efficiency concerning biochemical activities and a significant reduction in the morphoagronomic characters. The cultivar BAT 477 demonstrated to be drought-adapted presenting more efficient biochemical and morphoagronomic adaptions and the genotype BRS Pontal obtained morphoagronomic values similar to BAT 477, thus it may be classified as moderately tolerant to drought.
More
Translated text
Key words
Phaseolus vulgaris L.,Drought tolerance,Abiotic stress,Plant breeding
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined