Neuronal stability in medial frontal cortex sets individual variability in decision-making

NATURE NEUROSCIENCE(2018)

引用 20|浏览14
暂无评分
摘要
In the brain, decision making is instantiated in dedicated neural circuits. However, there is considerable individual variability in decision-making behavior, particularly under uncertainty. The origins of decision variability within these conserved neural circuits are not known. Here we demonstrate in the rat medial frontal cortex (MFC) that individual variability is a consequence of altered stability in neuronal populations. In a sensory-guided choice task, rats trained on familiar stimuli were exposed to unfamiliar stimuli, resulting in variable choice responses across individuals. We created a recurrent network model to examine the source of variability in MFC neurons, and found that the landscape of neural population trajectories explained choice variability across different unfamiliar stimuli. We experimentally confirmed model predictions showing that trial-by-trial variability in neuronal activity indexes the landscape and predicts individual variation. These results show that neural stability is a critical component of the MFC neural dynamics that underpins individual variation in decision-making.
更多
查看译文
关键词
Decision,Network models,Biomedicine,general,Neurosciences,Behavioral Sciences,Biological Techniques,Neurobiology,Animal Genetics and Genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要