Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal

NATURE PHYSICS(2018)

引用 843|浏览46
暂无评分
摘要
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co 3 Sn 2 S 2 , with a quasi-two-dimensional crystal structure consisting of stacked kagome lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl fermions close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the considerably enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1,130 Ω −1 cm −1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the kagome-lattice structure and the long-range out-of-plane ferromagnetic order of Co 3 Sn 2 S 2 , we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.
更多
查看译文
关键词
Electronic properties and materials,Magnetic properties and materials,Topological matter,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要