Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum.

Free Radical Biology and Medicine(2019)

引用 22|浏览22
暂无评分
摘要
Protein aggregation, oxidative and nitrosative stress are etiological factors common to all major neurodegenerative disorders. Therefore, identifying proteins that function at the crossroads of these essential pathways may provide novel targets for therapy. Oxidation resistance 1 (Oxr1) is a protein proven to be neuroprotective against oxidative stress, although the molecular mechanisms involved remain unclear. Here, we demonstrate that Oxr1 interacts with the multifunctional protein, peroxiredoxin 2 (Prdx2), a potent antioxidant enzyme highly expressed in the brain that can also act as a molecular chaperone. Using a combination of in vitro assays and two animal models, we discovered that expression levels of Oxr1 regulate the degree of oligomerization of Prdx2 and also its post-translational modifications (PTMs), specifically suggesting that Oxr1 acts as a functional switch between the antioxidant and chaperone functions of Prdx2. Furthermore, we showed in the Oxr1 knockout mouse that Prdx2 is aberrantly modified by overoxidation and S-nitrosylation in the cerebellum at the presymptomatic stage; this in-turn affected the oligomerization of Prdx2, potentially impeding its normal functions and contributing to the specific cerebellar neurodegeneration in this mouse model.
更多
查看译文
关键词
Oxr1,Prdx2,PTMs,O/N,ROS,RNS,AD,PD,ALS,PDI,TBC1D24,DOORS,Ncoa7,HMW,GPI/Gpi1,Oxr1-FL,CS,SNOC,SNO-protein,ORC,BCA,IPTG,FOX,veh,DTT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要