Human Tumor Genomics And Zebrafish Modeling Identify Spred1 Loss As A Driver Of Mucosal Melanoma

SCIENCE(2018)

引用 126|浏览23
暂无评分
摘要
Melanomas originating from mucosal surfaces have low mutation burden, genomic instability, and poor prognosis. To identify potential driver genes, we sequenced hundreds of cancer-related genes in 43 human mucosal melanomas, cataloging point mutations, amplifications, and deletions. The SPRED1 gene, which encodes a negative regulator of mitogen-activated protein kinase (MAPK) signaling, was inactivated in 37% of the tumors. Four distinct genotypes were associated with SPRED1 loss. Using a rapid, tissue-specific CRISPR technique to model these genotypes in zebrafish, we found that SPRED1 functions as a tumor suppressor, particularly in the context of KIT mutations. SPRED1 knockdown caused MAPK activation, increased cell proliferation, and conferred resistance to drugs inhibiting KIT tyrosine kinase activity. These findings provide a rationale for MAPK inhibition in SPRED1-deficient melanomas and introduce a zebrafish modeling approach that can be used more generally to dissect genetic interactions in cancer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要