Chrome Extension
WeChat Mini Program
Use on ChatGLM

3D-QSAR and Molecular Docking Studies on Design Anti-Prostate Cancer Curcumin Analogues

CURRENT COMPUTER-AIDED DRUG DESIGN(2020)

Cited 9|Views15
No score
Abstract
Background: Prostate cancer is one of the most common tumors in the world and the fifth leading cause of male cancer death. Although the treatment of localized androgen-dependent prostate cancer has been successful, the efficacy of androgen-independent metastatic disease is limited. Curcumin, a natural product, has been found to inhibit the proliferation of prostate cancer cells. Objective: To design curcumin analogs with higher biological activity and lower toxicity and side effects for the treatment of prostate cancer. Methods: In this study, the three dimensional-quantitative structure activity relationship (3D-QSAR) and molecular docking studies were performed on 34 curcumin analogs as anti-prostate cancer compounds. We introduced OSIRIS Property Explorer to predict drug-related properties of newly designed compounds. Results: The optimum CoMSIA model exhibited statistically significant results: the cross-validated correlation coefficient q(2) is 0.540 and non-cross-validated R2 value is 0.984. The external predictive correlation coefficient R-ext(2) is 0.792. The information of structure-activity relationship can be obtained from the CoMSIA contour maps. In addition, the molecular docking study of the compounds for 3ZK6 as the protein target revealed important interactions between active compounds and amino acids. Conclusion: Compound 28i may be a new type of anti-prostate cancer drug with higher biological activity and more promising development.
More
Translated text
Key words
QSAR,CoMSIA,molecular docking,curcumin analogs,drug design,prostate cancer
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined