Spilanthol Enhances Sensitivity to Sodium in Mouse Taste Bud Cells.

Chemical senses(2019)

引用 14|浏览11
暂无评分
摘要
Overconsumption of NaCl has been linked to increased hypertension-related morbidity. Compounds that can enhance NaCl responses in taste cells could help reduce human NaCl consumption without sacrificing perceived saltiness. Spilanthol is an unsaturated alkylamide isolated from the Jambu plant (Acmella oleracea) that can induce tingling, pungency, and numbing in the mouth. Structurally similar fatty acid amides, such as sanshool, elicit numbing and tingling sensations by inhibiting 2-pore-domain potassium leak channels on trigeminal sensory neurons. Even when insufficient to induce action potential firing, leak current inhibition causes depolarization and increased membrane resistance, which combine to make cells more sensitive to subsequent depolarizing stimuli, such as NaCl. Using calcium imaging, we tested whether spilanthol alters sensitivity to NaCl in isolated circumvallate taste bud cells and trigeminal sensory neurons of mice (Mus musculus). Micromolar spilanthol elicited little to no response in taste bud cells or trigeminal neurons. These same perithreshold concentrations of spilanthol significantly enhanced responses to NaCl (140 and 200 mM) in taste bud cells. Trigeminal neurons, however, exhibited response enhancement only at the highest concentrations of NaCl and spilanthol tested. Using a combination of potassium depolarization, immunohistochemistry, and Trpm5-GFP and Tas1r3-GFP mice to characterize taste bud cells by type, we found spilanthol enhancement of NaCl responses most prevalent in NaCl-responsive type III cells, and commonly observed in NaCl-responsive type II cells. Our results indicate that spilanthol enhances NaCl responses in taste bud cells and point to a family of compounds that may have utility as salty taste enhancers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要