Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential.

CIRCULATION RESEARCH(2018)

引用 117|浏览28
暂无评分
摘要
Rationale: Gut microbes influence cardiovascular disease and thrombosis risks through the production of trimethylamine N-oxide (TMAO). Microbiota-dependent generation of trimethylamine (TMA)-the precursor to TMAO-is rate limiting in the metaorganismal TMAO pathway in most humans and is catalyzed by several distinct microbial choline TMA-lyases, including the proteins encoded by the cutC/D (choline utilization C/D) genes in multiple human commensals. Objective: Direct demonstration that the gut microbial cutC gene is sufficient to transmit enhanced platelet reactivity and thrombosis potential in a host via TMA/TMAO generation has not yet been reported. Methods and Results: Herein, we use gnotobiotic mice and a series of microbial colonization studies to show that microbial cutC-dependent TMA/TMAO production is sufficient to transmit heightened platelet reactivity and thrombosis potential in a host. Specifically, we examine in vivo thrombosis potential employing germ-free mice colonized with either high TMA-producing stable human fecal polymcrobial communities or a defined CutC-deficient background microbial community coupled with a CutC-expressing human commensal +/- genetic disruption of its cutC gene (ie, Clostridium sporogenes Delta cutC). Conclusions: Collectively, these studies point to the microbial choline TMA-lyase pathway as a rational molecular target for the treatment of atherothrombotic heart disease.
更多
查看译文
关键词
cardiovascular diseases,gastrointestinal microbiome,humans,metabolism,thrombosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要