Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics

NATURE COMMUNICATIONS(2018)

引用 57|浏览22
暂无评分
摘要
We introduce indium arsenide colloidal quantum dot films for photovoltaic devices, fabricated by two-step surface modification. Native ligands and unwanted oxides on the surface are peeled off followed by passivating with incoming atomic or short ligands. The near-infrared-absorbing n -type indium arsenide colloidal quantum dot films can be tuned in energy-level positions up to 0.4 eV depending on the surface chemistry, and consequently, they boost collection efficiency when used in various emerging solar cells. As an example, we demonstrate p – n junction between n -type indium arsenide and p -type lead sulfide colloidal quantum dot layers, which leads to a favorable electronic band alignment and charge extraction from both colloidal quantum dot layers. A certified power conversion efficiency of 7.92% is achieved without additionally supporting carrier transport layers. This study provides richer materials to explore for high-efficiency emerging photovoltaics and will broaden research interest for various optoelectronic applications using the n -type covalent nanocrystal arrays.
更多
查看译文
关键词
Chemical engineering,Materials for energy and catalysis,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要