Ice segregation in the crown of winter cereals: evidence for extra-organ and extra-tissue freezing.

PLANT CELL AND ENVIRONMENT(2019)

引用 14|浏览9
暂无评分
摘要
Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion-weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L. Norstar). Differential thermal analysis, ice nucleation, and localization studies identified three distinct exothermic events. A high-temperature exotherm (-3 degrees C to -5 degrees C) corresponded with ice formation and high ice-nucleating activity in the leaf sheath encapsulating the crown. A midtemperature exotherm (-6 degrees C and -8 degrees C) corresponded with cavity ice formation in the VTZ but an absence of ice in the shoot apical meristem (SAM). A low-temperature exotherm corresponded with SAM injury and the killing temperature in wheat (-21 degrees C) and rye (-27 degrees C). The SAM had lower ice-nucleating activity and freezing survival compared with the VTZ when frozen in vitro. The intermediate zone was hypothesized to act as a barrier to ice growth into the SAM. Higher cold hardiness of rye compared with wheat was associated with higher VTZ and intermediate zone desiccation resulting in the formation of ice barriers surrounding the SAM.
更多
查看译文
关键词
cold acclimation,differential thermal analysis,magnetic resonance microimaging,nucleation,rye,wheat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要